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Abstract

This paper is devoted to the foundation of a general linear theory of laminated composite anisotropic shells of
arbitrary shape and curvature, in which the effect of the interfacial damage induced by the imperfect bonding between
the constituent laminae is incorporated. In this context, the imperfect interface conditions are described in terms of
linear relations between the interface tractions in the normal and tangential directions, and the respective displacement
jumps. In addition to the effects of imperfectly bonded interfaces, the theory incorporates the effects of transverse shear
and transverse normal strain, the dynamic effects, as well as the anisotropy of constituent material layers. Due to its
general character, this theory can contribute to a more reliable prediction in the linear range of the load carrying
capacitiy and failure of laminated composite shell structures featuring imperfectly bonded interfaces. © 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The requirements for higher strength-to-weight and stiffness-to-weight ratios, better corrosion resistance,
longer fatigue life, greater stealth characteristics over metals as well as the directionality properties, have
resulted in increasing demand of laminated composite structures in many challenging applications. Among
these, there are the future supersonic/hypersonic launch and reusable flight vehicle operating in space,
advanced propulsion systems, etc. In spite of their increased flexibility, the structure of next generation of
high speed flight vehicles, has to be able to operate in complex environmental conditions and feature an
expanded operational envelope. A problem of crucial importance toward the rational design of these
structure consists of the possibility to accurately determine their load carrying capacity. The exhaustive use
of the load carrying capacity of such structures can dramatically contribute to the increase, without weight
penalties, of the performance of such vehicles.
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As a result of the ongoing trend consisting of the incorporation of advanced composite materials in their
construction, and for a reliable evaluation of their load carrying capacity, a careful assessment of the
implications played by a number of non-classical effects is required. In this sense, a thorough discussion of
the state of the art of multilayered composite shells and of the issues which have to be solved still to obtain
reliable models was accomplished by Noor and Burton (1990).

One of the important factors which has to be addressed is related to the transverse shear and transverse
normal effects.

An additional factor which becomes relevant in the context of multilayered plates and shells composed of
advanced composite materials is of a modeling nature. This is related to the non-fulfillment of the conti-
nuity requirement of shear and transverse normal tractions across the perfectly bonded interfaces. As was
revealed in different contexts (Di Sciuva, 1987, 1994; Soldatos and Timarci, 1993; Timarci and Soldatos,
1995; Di Sciuva et al., 1997; Librescu and Lin, 1999; He, 1994; Ossadzow et al., 1995; Carrera, 1999a,b,c),
the violation of this requirement can result in unavoidable errors in the evaluation of the load carrying
capacity of laminated composite structures.

Moreover, as a result of manufacturing processes and/or operating conditions, interfacial bonding
damages between the constituent laminae of the composite structures, resulting in debonding or imperfectly
bonded interfaces, can occur. These flaws result in stiffness degradation with detrimental implications upon
the response behavior of laminated composite structures, in general, and on their load carrying capacity, in
particular. In this paper, the effect of damage due to the imperfect bonding between the constituent laminae
is incorporated. In this context, various cases of imperfectly bonded interfaces, including, as special cases,
complete debonding, slip type interlaminar imperfection, and perfect bonding will be considered in a unified
way.

Herein, a rather general linear theory of anisotropic laminated composite shell structures characterized
by a general lay-up configuration, featuring damaged bonded interfaces and incorporating the transverse
shear and transverse normal effects will be developed. Employment of a linear relationship between the
interface tractions and displacement jumps across the imperfect interfaces, and using the Hamilton vari-
ational principle of the 3-D elastodynamics in conjunction with the postulated displacement field, results in
the equations of motion and boundary conditions. Special cases of the obtained equations are displayed
and some comments on the alternative ways enabling one to express the static and kinematic 2-D quantities
are also included.

In spite of its evident importance, as far as the authors of the present paper are aware, the theory of
laminated composite shells has not yet been approached in a so general context.

This paper represents a continuation and development of a number of results previously obtained by
Librescu and Schmidt (1991), where the case of perfectly bonded interfaces was considered, as well as of the
papers by Schmidt and Librescu (1996, 1999), where for laminated composite plates and shells, respectively,
a special case of interlaminae flaws was considered.

2. Preliminaries

Consider a composite laminated shell consisting of a finite number of linearly elastic anisotropic layers,
each of these exhibiting different physico-mechanical properties. It is assumed that the interfaces between
the contiguous layers may feature imperfect bondings which can affect the degree of adhesion at the in-
terfaces in the normal and tangential directions.

The thickness of the kth constituent layer and of the entire shell are denoted by Ay (k=1, 2,...,N)
and A, respectively, where N denotes the total number of constituent layers.

For the sake of convenience, the undeformed mid-surface of the bottom layer is selected as the reference
surface o (Fig. 1). The points of the 3-D shell structure are referred to an arbitrary curvilinear coordinate
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system x' (i = 1,2,3), where x* (« = 1,2) is the set of curvilinear coordinates on ¢, and x* is the coordinate
normal to o.

The distance along x> between the reference surface and the undeformed mid-surface of the kth layer is
denoted as ¥Z with (Z = 0, while ®Z* and ®Z~ identify the upper and bottom surfaces of the kth layer,
respectively (Fig. 1).

We denote by t the volume of the shell space in the undeformed configuration; S* (corresponding to
x> =®™Zz*) and S~ (corresponding to x* = (VZ~) denote, respectively, the upper and bottom external
surfaces of the shell, while 4 is the lateral boundary surface of 7 generated by the normals to ¢ along its
boundary curve % (with arc length s).

By %;,B,, (% = B,U B,) and €r,%6,,(¢ = €, U%E,), we denote the two parts of % and %, where stresses
and displacements, respectively, are prescribed.

The components of the spatial metric tensor g;; of the undeformed shell space are connected with their
2-D counterparts a,z by

&up = WM, g3 =8"=0, gu=g’=1, (1)
where i denotes the shifter tensor defined by
= 0p — x3b;, (2)

5;; being the Kronecker delta and b, is the second fundamental form of the reference surface. As shown in
Eq. (26), pj is non-singular. Its inverse, denoted by (,u‘l);, and satisfying the orthogonality relation

w ) =3, 3)

may be expressed as

W= S )

n=0
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In Eq. (4), (b"); is defined by

(b)) = B = B0, 5)
where, in addition,
05 forn=0
1\ % — ﬁ b
(") {0 for n < 0. (6)

As was emphasized by Naghdi (1963) and Librescu (1975a,b), uj and (,u‘l);‘g (called shifters and its inverse,
respectively) play an important role in establishing the relationships between space tensor components and
their surface (shifted) counterparts.

In order to reduce the 3-D elasticity problem to an equivalent 2-D one, the equations connecting the
covariant derivatives of space tensors with their surface counterparts are used. Several of these relationships
are displayed next

Top = t(Typ — buT3), Typ = 1T 3, Ty, = T3, + BT, Ty = T3, (7)
where the shifted components are identified by a superposed bar. These can be functions also of the
transversal coordinate x> also. A full account of the relationships between the derivatives of space and
surface tensors was provided in the monograph by Librescu (1975a,b).

For shallow shell theory, we may appropriately consider

iy — oy, (8)
and as a result,
W=l = (g/a) = 1 - 20 + K() — 1, 9)

where g = det(g;;) and a = det(a,s), while H and K denote the average and Gaussian curvatures of o,
respectively. By virtue of Eq. (8), it follows that for shallow shells

&ij = dij, g’ =d’, (10)
and as a result, the metric tensors associated with the system of coordinates on ¢ and with its projection on
the plane P are the same and, in addition, the curvature tensor of the reference surface behaves as a
constant in the differentiation operation.

At the boundary curve % of g, we define the unit tangent and outward normal vectors = and v, re-
spectively, by

T =1"a,, v=1"a,=1Xn (11)

Here and in the following, partial differentiation is denoted by a comma (-),; = 0(-) /0x;, while ( )||, and ( )|,
stand for the covariant differentiations with respect to the space and surface metric, respectively. In the
above relationships (as well as in the forthcoming ones), the usual summation convention for repeated
indices is implied, where Latin indices range from 1 to 3, while Greek indices range from 1 to 2. In addition,
superscript k in brackets attached to any quantity identifies its affiliation with the kth layer.

3. Kinematic equations

Within the concept of infinitesimal small strains, the 3-D strain—displacement relationships assume the
form

2D =y 4y
ij

il Jlli

(12)
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where V,.(k)(z y® (x?,x%;1)) denote the 3-D displacement components of the points of the kth layer.
Eq. (12) in conjunction with Eq. (7) yields the 3-D strain components under the form

PO 0N ()
284 = (Vg = b)) + 15 (V) — 07,

2EY = KV + Vo) + 07, (13a-c)
k (k)
E§3) = V3\3~
In these equations, ¥, and 7 are the shifted displacement components, their spatial counterparts being

V, and 13, respectively. The relationships between these components are (Naghdi, 1963 and Librescu,
1975a,b)

V, = iy, Vs =V, (14)

where V, = V,(x*,x*) and V3 = V3(x*,x%).

As concerns the imperfect bonding conditions, these are expressed in the simplest way, by postulating
that the jump in normal and tangential displacements is proportional to the associated traction compo-
nents, or in an equivalent form as

6" = F?[[VZ]L

15a,b
¢ =3[ ( )

“won

Herein, [ - ] denotes the jump operator of the quantity across the contiguous damaged interfaces. As a

result
M - L) = (@

[V/]=V/(07) =V (0) = (&), H6ab)

[V =7°(07) = V*(0%) = ()
denote, respectively, the jump of tangential and transversal displacements across the interfaces ®¥'Z* and
(k+tD)7z=, I'% and I'; are the bonding stiffness tensors of the interface between the kth and (k + 1)th layers
(with dimensions stress/length), where 0 = (x*, x> = ®Z*) and 0~ = (x*,x* = ¥*1Z~) define the interfaces
weakened by the flaw, whereas 6** and 6> denote the shear and normal tractions at the respective inter-
faces.

Eq. (15a,b) reveal that for I'} = co and I'j = oo, the displacement jumps vanish, implying perfectly
bonded interfaces. At the other extremity, I'; = 0 and I's = 0 correspond to zero interface tractions, im-
plying completely debonded interfaces. Any finite positive value of interface stiffness parameters defines an
imperfect interface. For the special case (Benveniste, 1984) I'; =0, and I ; = oo, implying that the trans-
versal displacement and the normal traction remain continuous although the shear tractions at the re-
spective interface vanish, complete slip without friction in the tangential directions is allowed. For this case,
the terminology of perfectly lubricated interfaces was afforded (Aboudi, 1987).

In the following developments, instead of the previously bonding stiffness quantities, the imperfect
bonding is described in terms of the compliance bonding tensors B? and B3 (of dimensions length/stress).
These are the inverse of the bonding stiffness tensors I'? and I'3, respectively, in the sense of (Schoenberg,

1980)
(r):By = 55, (17a,b)
(r'3B =1 ’

In this case, the inverted form of Eq. (15a,b) becomes
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[v*] = Bi6™, (18a)
[V3] = Biés. (18b)

In order to model the theory of laminated shells featuring such interlaminae imperfections, and at the
same time to obtain the simplest possible system of governing equations, an extension of the representation
of shifted displacement components advanced in various contexts and with various degrees of approxi-
mation, starting with that considered in the earlier work by Liu et al. (1994), and continuing with those by
Schmidt and Librescu (1996), Cheng et al. (1996a,b, 1997, 2000), Di Sciuva (1997), Williams and Addessio
(1997, 1998), Di Sciuva et al. (1999), Cheng and Kitipornchai (1998), Librescu et al. (1999), and Icardi et al.
(2000) is used as

k—1

7V ) =0+ 200, + Y [ = 0Z7]Q0 Y (e - 0z7) + 3 i,y (f - 0z, (19a)
=
— k=1 k=1
7Y ) =+ Y W - 0z v (e - 0z7) + Y 05y (2 - 0z, (19b)
- =
Herein, V9, and (V95 are the shifted counterparts of the tangential and normal displacement jumps across

the top surface of the ¢th layer, while ¥ (x* — (/Z*) = ¥, denotes Heaviside’s step distribution. In addition,
0,(= v,(x?;£)) and v3(= v3(x?;¢)) denote the displacement components of the reference surface of the shell
(defined by x* =0), ¥ (=, (x*,¢)) denote the rotations of the normal to the reference surface,
¥3(= Y3 (x?, 1)) corresponds to the deformation in the transverse normal direction, while Q1) (= Q) (x?; 1)),

and Q(f) (= Qg” (x*, 1)) are functions that are determined by fulfilling the continuity conditions for shear and
normal tractions across laminae interfaces.

Whereas the first two terms in Eq. (19a) and the first term in Eq. (19b) represent the standard contri-
butions in the displacement representations used in the modeling of the first-order transverse shear de-
formation theory of laminated shells, the third term in the same equation supplies the contributions, which
are continuous with respect to the x* coordinate, but with jumps in the first derivatives at the interfaces
between the consecutive layers. This representation constitutes an extension of that prompted by Di Sciuva
(1987), and of that advanced by Ossadzow et al. (1995), in the case of laminated composite shells featuring
perfectly bonded interfaces. Moreover, the second term in Eq. (19b) captures the effect of transverse normal
compressibility, which for the present case is very important.

It should be remarked that in the absence of displacement j Jumps the dlsplacement components V and

" become continuous functions of x* for arbitrary values of Q" and Q

By virtue of Egs. (13a—c), and in conjunction with Egs. (19a) and (19b), the 3-D tangential strain

components can be expressed as

) 0 1 2
EW = efx};;) +x° eg;;) + () efj},& (20)

m m ’ . . . .
where e,3 = e,p(x”;t) are the tangential 2-D strain measures. Their expressions are

k—1

0
2ely) = vyp + Vg — 2bygvs — »_OZ° (9 08 +9,;|7) + 2b, E “z°Q + E : Bagp + Oig)
=1

k-1
_ 2171/32(0{’37
=1

(21a)
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k1
1k 7 . ¢ ¢
2eoc/3) =Wyp + Vg — 2bopths — by — byvyyp + 2bbypv3 + z (Q;(ml + Qi\}s)
=1

k—1 k—1
+ )Y VzQl + b Z“ 7°Q 2171,,29 — 21k Y Ozt Q)
(=1 =1
k—1
- bz{cz “/ [IZ Vy\x + 2b brﬁz V35
=l (21b)
S0 ol
zeaﬁ = =90 ¥yt ;va +hp| Voot ZQW = 2biby | Y5 + ;Qs : (21c)
=1 =

As concerns the transverse shear strains ¥E 5, their expression is

0 1
Ey = e+, (22)
where
0k ] . k—1 ‘ k—1 ¢ k—1 k—1
2ef) (= 9%) = W, + vsa + blvs + Y Q0 — S "0ZQ0 £ b,y 05, 4y Oy, (23a)
/=1 =1 (=1 (=
and
eocS =3, + ZQW (23b)

Finally, the transverse normal strain component is expressed as

k-1
k) _ O®k) ¢
Eg; = 953 =5+ Z Q; g (24)
=1
. . . 0 1 2 01 0 .
In the previously displayed equations e,g, (€xs, €s5), (€s3,€,3) and es; define the membrane, bending,
transverse shear, and transverse normal strain components, respectively. In addition,

O =80 —Oztp! (25a)

denotes the shifter tensor generalized to laminated composite shells (Librescu and Schmidt, 1991).

At this point, it is worth noting that both the representation of the displacement field, Eqs. (19a) and
(19b), and the expressions of 2-D strain measures e,l, can be viewed as the superposition of three different
contributions, namely, (i) of one that is similar to that characterizing the extended first-order shear de-
formation theory in the sense of including the effect of thickness compressibility, (ii) of the one exhibiting a
continuous, piecewise variation from layer to layer being related to the functions fo) and Q(f), contribu-
tions underscored by a broken line, and finally, (iii) that part related to the effect of imperfectly bonded
interfaces, which involves the displacement jumps )9, and ®)9;, marked by a solid line.

Eqgs. (21a)—(21¢) supply the membrane and bending 2-D symmetric strain measures, ol ﬁ), e® > and ¢
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However, alternative, non-symmetric strain measure counterparts can be defined as

k—1 k—1 k—1 k—1
Vg = Uap — bagvs — 3 DZ7QUL 4+ byd V7R £ Oy — by iy, (25b)
=1 =1 /=1 /=1
B N N0
Ko = Vg = bl + 3 Ry = byd O (25¢)
=1 =1

by virtue of which
2Eo([)’ - lu(x (/y}/ﬁ + 'x Ky/i ) + lu/)' (ywk) + 'x K k)) (26)

It can readily be shown that between the previously defined symmetric strain measures and the non-
symmetric ones, 7,; and K,, the following relationships can be established (Librescu, 1975a,b):

gik) = %(yyﬂ + yﬁa) (273')
e = ( 8 il — by bfﬂf@) (27b)
h/—’
) = (b" K]+ b W) (27¢)
N———— —

In addmon it is easily seen that ¢ ol ﬁ ) is not independent, in the sense that it can be expressed in terms of

0
li ande

2 - (k 1(k
= o b ) 2

4. Special cases
4.1. Strain—displacement relationships for shallow-shell theory
For shallow shells, by virtue of Eq. (8) and of
(é)'u; — 0%, (Z)(Hfl); — 5, (29)

a simplification of Egs. (21a)—(21c¢) is obtained:

26 a = UValp + Vgl — 2b1ﬁl/3 2(6 Z+( 2B + Q(a> + ZbIﬁZ Z7Q Z) + z \'1‘5 +([) {)/5\1)

—2b, Y %
! Z B (30a)

k-1
(k) (€) (€) ()
2eaﬁ = lpxlﬁ + lﬁﬁx — 2byp¥s + ;(Q[“ +Q, [i) — Zb“ﬁZQ3 , (30b)
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2%&1;2 — 07 (30C)
0k k—1 ’ k—1 k—1
208 (= 75) =V, + 3.+ ZQ = (OZ7Q5), + 5> (0, + D ()i, (31a)
/=1 =1 =1
T k—1 S
2l =, + > QY. (31b)
=1

It is also seen that, by virtue of Eq. (8), Eq. (26) becomes
k k k k k
284 = (o) + o) +x° () + ). (32)

wherefrom it clearly appears that in this case the terms in Egs. (27a)—(27c) underlined by an undulated line
should be discarded.
As concerns the transverse normal strain measure, its expression given by Eq. (24) remains unchanged.

5. Determination of the functions glﬁ and ()

As previously mentioned, the terms involving fo) and Qg@ in Egs. (19a)-(19b) have to be determined
from the requirements of shear and normal traction continuity across the layer interfaces.

As a preparatory step, the relationships between the transverse shear and transverse normal stresses,
respectively, and the corresponding strain components are considered. As a result

0) 3 — Z(k)Eﬁ3“3Eg§), (33a)
*) 533 — (k)E3333Eg/§) + (k) E33“'BE$}) (33b)
———

are used in conjunction with Egs. (21a)—-(21c¢), (23a) and (23b) and (24). However, keeping in view that in
the expressions of e ’;3), the functions Q ") appear 1n dlfferentldl form, whereas Q< ) appear only in an alge-
braic form, for the purpose of determmatlon of Q from Eq. (33b), we w1ll use a fact that is particularly
true in the case of composite materials, namely that the effect of £,5 on o3 is much smaller than that of Ess.
As a result, in the context of determining Q only, the term identified in Eq. (33b) by the undulated line will
be neglected. In such a way, the functions Q and ro are determined separately from Egs. (33a) and (33b),
respectively as

o = WESS (B Fyy33 — © P33 g, (34a)
‘Qgck) :<k)(:u—l)5{4(l)Eﬂ3W3 [<k+l)F‘/j3ﬂ3 - <k)Fﬁ3P3] (lpm + v3|l«’) + bZJvﬂ + (I)Z+l//3|m)

+ 42 ()Eﬁ?nﬂ (<k+1>Fﬁ3 5 — Fﬁ3 73) ( [)ZJr (e-1) Z+) <¢3|U + 293(]) (34b)

n=l- = -

_ (k) (,3“) _ bf}(") 91}7

In Egs. (33a) and (33b) and (34a) and (34b), £2**, E*%3 | and F};,3 are the components in transverse shear
and transverse normal directions of elastic and compliance tensors, E/"" and F};,,, respectively.

A more condensed form of Egs. (34a) and (34b) is obtained when the following notations involving the
elastic characteristics, are considered:
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() g — ) (= 1)7 R g2, (35a)
where

(60 g2 = 4O Py (FDp o O, 4), (35b)
and

<k)Aﬁ33 = (DE»3 ((Hl)Fsssa - <k)F3333)- (36)

Using Egs. (35a) and (35b) and (36), Egs. (34a) and (34b) become

ng) = A3y, (37a)

k /-1
QY = (vy0 + blyvs + W, + V20, ) W20+ (V28— TNz7) (1 * WA%) WP
(=2

= © () (ba50 +5%)). (37b)

Within the general shell theory, these expressions reveal that the functions Q are expressed in terms of the
unknown functions ¥, Y5, v, and v;, as well as of the displacement j Jumps vi and V3, whereas Q M is ex-
pressed solely in terms of the function 5. Herein, ® (p~1)? = (u=1)"(x*, x> = ®Z*) is the inverse shrfter for
laminated shells whose expression (Librescu and Schmidt, 1991), is

&) + Wzt (bs — 2HSY)

® (-1 _ ) 38
G 1 —2(RZH)H + (WZ+)K (38)

The denominator in Eq. (38) can be expressed in a more compact form as
1-2(WzH + Wz YK = det(Wpg) = Oy, (39)

where V17 is defined by Eq. (25a).
It can also be remarked that for shallow shells and flat plates, 93 remains unchanged, whereas Eq. (37b)
reduces to

k /-1
QY =A%, + v3 + VZ7Yy,) + D (V27 = 07Y) (1 +Z<">A3>W>A.“;w3m —i§ (40)
=2 n=1

Eq. (40) shows that in this special case, the expression of ng‘) does no longer include the displacement jump
v,. The same equation also reveals that in the case of perfectly bonded interfaces, and when transverse
normal compressibility is disregarded, Eq. (40) coincides with its specialized counterpart derived by Lib-
rescu and Schmidt (1991).

6. Expression of displacement jumps

In order to represent the governing equatlons in terms of the displacement quantities, the continuity
functions Q Qg , and dlsplacement jumps #3; and ®9, have to be expressed entirely in terms of Y, ¥3, v,
and v;. Concernlng Qg , this step was materialized in Eq. (37a). Preparatory to expressing the other
quantities in terms of displacements and rotations only, determination of transverse shear and transversal
normal strain components, and implicitly of shear and normal tractions is required. Using Eq. (33a) in
conjunction with Egs. (23a) and (18a), after lengthy but straightforward manipulations, one obtains



L. Librescu, R. Schmidt | International Journal of Solids and Structures 38 (2001) 3355-3375 3365

k
Wy — (k)Bz(k)Ei}uﬂ (Ua,p B0, Y, + (k)Z+¢3lp) <5f’) + Z (1;@)A(iu>

(=1
k m—1
4 Z ((k)Z Z+ () /13 5;7 Z _ (m— 1)z+) (1 + Z(ﬂ)/ﬁ%) (m;f)APw] lpS\p‘ (41)
(=1 n=1

It is also important to obtain the expression of the shifted counterparts of ®)7* given by

N A A (i T (42)
where ®g , = Wg 4(x,, x> = ©Z*). Taking account of Eq. (41) in Eq. (42), the expression of ¥, writes
O, = O (v, + Bo, +1, ) + (V2 OV D0 )y, (43)
Similarly, use of Eq. (24) considered in conjunction with Eq. (33b) in Eq. (18b), yields ®i; = ®17; as
Wy = D@3, (44)
Herein
k
Wpn = 0)(, 1) g 0 pheD pisos <5p n Z (1:0) g0 )7 (45a)
=

_ . i 303
(k)(pfx _ (,u 1)# (k)g#ﬁ (k)Bf1 (k+1) 7303

o

k J4 m—1
<3 {(<k>z+ MUSEIYSS l(<m>Z+ — =Dz x (1 +3 <">/1_33><"”>Aﬂw } (45b)
=1 m=2 n=1
k
W3 — (g3 (kD) 3333 <1 + Z “)A%). (45c¢)
(=1
In the light of Egs. (43) and (44), Eq. (40) can be cast as
QY = OM? (v3, + bov, +,) + ONLYy,, (46)
where
(k)Mﬂ (1 /»)g %l’ (47a)

W)ye = W Z+E0 e 4 Zk: (0z+ — nz¥) <1 i Ziyg}) (0 90— b0 () (D758, 4 1)

=2 n=1
Sy g, (47b)
(k) P, = bmy(k)BJ(k)EnSwS ( + Z (1; Z ) (47C)

whereas 11927 1s expressed by Eq. (35a). For perfectly bonded interfaces implying B® — 0, B3 — 0, and
consequently ( b4l % ®¢P ) — 0, it is readily seen that ¥ — 0 2° “while for shallow shells or flat
plates 10 2* — “”‘M,‘;.
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7. The equations of motion and boundary conditions

The Hamilton principle of 3-D elastokinetics will be used to derive the equations of motion and the
boundary conditions of laminated shells featuring damaged boundary interfaces. Consistent with this
principle

5]
/ {/ 0”3E;dt — 8K — / c'dVd4 — / pOH"SV,-dI} dr =0, (48)
1 T o T

where K(= [ p, V' ¥idt) denotes the kinetic energy, H(= H'g,) denotes the vector of body forces measured
per unit mass of the undeformed body of volume 7, p, denotes the mass density, while o'(= ¢/'n;) are the
components of the stress vector prescribed over the undeformed external boundary surface .7, where n;
denotes the components of the outward normal unit vector n, and # and #, are two arbitrary instants of
time. We make use in Eq. (48) of the subsidary condition

20E;; = 8Vy; + 8V, (49)

as well as of Egs. (19a), (19b) and (8), and of the expression dt = udx* de. Moreover, keeping in view that
the total external area <7 is constituted of the lateral bounding area % (for which n,d% = v,udsdx;) and of
the top and bottom face areas S* (for which dS* = u*do), and applying Green’s theorem wherever pos-
sible, considering the variations dv,, dvs, 8y, and &y, as independent and arbitrary (except on %, where
these are prescribed), and in conjunction with Hamilton’s condition according to which the virtual dis-
placements vanish at #; and #,, and after lengthy calculations one obtains the equations of motion/equi-
librium and the boundary conditions. It clearly appears that by virtue of Egs. (10) and of Egs. (20) through
Eq. (24) that have to be used in Eq. (48), Hamilton’s principle will include the effects of interfacial dis-
placement jumps connected with interfacial transverse stresses through Egs. (18a) and (18b).

7.1. The equations of motionlequilibrium

The equations of motion are obtained in the form

Oacﬂ % B3 04 0y 0Oy
sv,: LV —b30P +p'+F +1 =0, (50a)
B
04y 0 7 0
dus: QP +byl” + P +F +1 =0, (50b)
1p T PR
Sy, L?| — 0P +p +F +1 =0, (50¢)
B
1 1
8y : SP|,— V3 4 by 4P+ F 4T =0, (50d)

The equations of motion as expressed by Egs. (50a)—(50d) have to be supplemented by that expressing the
symmetry of the stress tensor. Following the procedure developed e.g. in Librescu (1975a,b), the derivation
of this additional equation is straightforward and is given by

0;12 [ 1/{/1
€u L — b'LﬁL =0. (506)

where ¢, is the antisymmetric surface tensor. In the case of the shallow-shell theory, this equation becomes
an identity, and consequently it should be discarded.
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The expressions of the gross stress resultants and stress couples are displayed in Appendix A. These
equations are represented in terms of their counterparts associated with each constituent layer, defined as

" k) 7+ . k) 7+
(k)LO‘ﬂ _ / /JUWMI; ( ) dx3, (k)L“3 _ / uo_oc3(x3)"dx3’ n= 0’ 17
(k) 7~ (k) 7~

7+ (51a—c)

033
)3 :/ ,ua33dx3.
(k) 7~

7.2. Load and load couple

From the Hamilton variational principle, the load and load couples measured per unit area of ¢ result as
S+ N—-1
o 53p o ? 3P 2 W) 7+ _ (O 7O p 8 4 (O) wh
p - {Mu" L*_}_bﬂ[ﬂupa L+ . [( z z ) M+ lp"l}’

N—

N-1
P = e {[W,, LAZU(N)T 0Z+)OMP + /)q/ﬁ}} (52a-d)
(=1 B
13 _ 33 3157 { 7 3P S N7+ _ (O 7+\ONB o O 7+ OB 4 (0) 4B
p = [uo” Xl — {uupa L [( ZT=VZT)ONS+ T + 4%}
(=1 B
N-1
ey Y[z - 027) = 04, 1 0w
=1

Herem (p“ 03) and 1177« denote the external surface loads and load couple components, respectively, and

[]S* = [s+ — [s--

7.3. Body and inertia couples

From Hamilton’s variational principle, one also obtains the expressions of the body gross force and
body couple resultants as

((k) Fr_ 0740 1%’) OprF 4 RO b

’ 53a—d
B (s3a-d)
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Herein, F F and F“ denote the gross body forces and body couples, respectively, measured per unit area
of the undeformed reference surface, while
" k) 7+ ) " k) 7+
WF* = / pomH (r')'dx’ and  WF* = / popt H ()" dx’. (54a,b)
k) z~ k) z-

Assummg that the bond is without inertia, (Jones and Whittier, 1967), the gross inertia forces and inertia
couples 1 1 dnd 13 can be obtained from Egs. (53a—d) by replacing () FPby 0] I WP (n=0,1),
respectively. The latter quantities, representing the inertia terms per each lamlna are express1ble by re-
placing in Eq. (54a,b) H* and H? by —p,V* and —p, V>, respectively.

7.4. Boundary conditions

From the line integral arising in Eq. (48), using the relationship

603 603
T (55)

where 0/0v and 0/0s denote, respectively, the partial derivatives along the normal and tangent to €, one
obtains the static and geometric boundary conditions on %, and %, (¢, N %, = 0).
The boundary conditions on (gf result as

U3y = V34 =

ovy : L vavﬁ +1,K ﬁravﬁ L vavﬁ —I—T[K TyVp,

7 o 7 o
Ov.: Lty — ol K¥t,vg =L 1,v5 — 0, K" 1,08,

Syt (07— G St o (Key) = (Q “”) bt o (K,

3¢, : K“ﬁvavﬁ = K“ﬂvavﬁ,

Ly Ly 56a-h
Y, : <L h_ K“ﬁ> VyVp = (L b K“ﬁ> Vo Vg, ( )
1, 1
3y, : (L f —K“ﬁ> TyVp = (Laﬂ — K“ﬁ> TyVp,
)

. NE 0 (e
Y5 (Sﬁ3 —Hﬁ—t-Kﬁ)v/g +§(R B‘cav,;) = (Q —é’ﬁ—t- 2/3)\1,;—&-&(13 ﬁ‘cavﬁ>,

s, R“ﬁvav,; = R“ﬁvav,;.
The boundary conditions on %, are

v=v, UV, =0V,

~y ~r

U3 = Eg? d)v = d) )
b= =y, BT
¢3 =¢, (153*- =¢

~3 ~3y

In Egs. (56a-h) and (57a-h), the prescribed quantities are underscored by a wavy line, while t,(=—b,zv*t")
and o,(= ba,ﬂ“r/‘) denote the geodesic torsion and normal curvature of %, respectively, and
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¢, =¢,v* where ¢, =vs, + biw (58a,b)

The remaining notations are displayed in Appendix B.
At points on € located at s =s;,i = 1, p, at which K*¥ and R have jump discontinuities induced by
corners or concentrated loads, one obtains the conditions

” si+0 si+0
du3(s;) (K‘/‘ravﬂ)h:o = ([S“ﬁ‘tdv,;) vo
S,;O ' (593., b)

si+0
v+0 — (13“‘[)”[1\1/;)

Si—!

Sus(s;)  (R7ovp)

Si—

Consistent with the number of eight boundary conditions, which have to be prescribed at each edge of the
shell, the associated system of governing equations is of the order of 16, that is, six orders higher than the
standard first-order transverse shear deformation theory, and four orders higher as compared to the case of
laminated shells incorporating sliding bonding imperfections, where the assumption of transverse normal
incompressibility is adopted. This means that incorporation of full interface bonding imperfections and
transverse normal compressibility is paid by a substantial increase of the order of the governing equations.

It should be remarked that along a clamped edge requiring fulfillment of homogeneous kinematical
conditions (57a-h), the sliding effect is completely eliminated.

8. Constitutive equations

The material of each constituent layer is assumed homogeneous and anisotropic, the anisotropy being of
the symmetry type with respect to the surface x> = 0 (monoclinic symmetry). For the actual fibrous rein-
forced composite structures, the constituent orthotropic materials whose principal axes are not aligned with
the structure axes, feature monoclinic-type anisotropy (Librescu, 1975a,b).

For this case of anisotropy, the constitutive equations for the kth layer assume the form

(k) g8 (k) gobop E((iz 1 (k) b3 Eg/;)’ (60a)
() go3 = ok g3 g®). (60b)
(k) 533 (k) 3333 Eg? +0 E331/5Ei’;j>_ (60c)

Having in view that the tensors of elastic moduli E*#° E*P3 E®383 are space tensors, these are expressible in
terms of their surface counterparts as

BP0 = (w7 () (), (e RE™, (61a)
B = () () B (616)
= () e B (o1
3 (61d)

At this point, it should be remarked that by virtue of conditions proper to shallow shells (Egs. (29) and
(61a)—(61d)), the space tensors of elastic moduli £/ coincide with their surface counterparts £/,
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By virtue of Egs. (21a)—(21c) through (24) expressing the 3-D strains, and of those for the stress re-
sultants and stress couples, Eq. (51a)-(51c), one obtains

Oap 0(k 0 o Lk wBop 2(k 25330
W™ = @, wapegj; +® Bf/f“"efjg 4 (0, gabop effz +®,B ﬁ33eg’;)_/ (62a)
Lop ; . . A ; :
W™ — ), Bz/prgfj; + (”zBi/“””éﬁfg 4 (k) pbor é“; + 0 thf332g’;>7 (62b)
003
C)3 :(k)OBocSu)Sggg _l_(/c)l Ba3073ég¢3>7 (62¢)
10‘3 0 1 62d
®f :(k)lBoc3w3e£f;+(k)2Bx3w3e((27 (62d)
033 0 5 0(k 1(k : Y
®r :(k)OB3333 e§§>+“)oB33“"ei§?+(")1B33‘“”e§,§+“>zB”“”e§’}3. (626)
The stiffness quantities appearing in Eqs. (62a)—(62¢) are expressed as
o ()z+
), g = WE* / )y D () () d (63a)
(k)z-
ey Wz ’
9,5 = WE [y ) ) (63b)
(k)z-
) pwe3d _ (T3 ©z+ ZINe [ —1\e [ 3\ 9.3
B =WE p(p )y (00); ()" dx?, (63c)
(k)z-
(k) 13333 _ (O3B (k) 7t _ (k)7
oE7 =WE (Zf Z). (63d)

Using the expression of the inverse shifter tensor, Eq. (4), more elaborated representations for the laminae
stiffness tensors, Eqgs. (63a)—(63d), can be found in Librescu (1975a,b). Based on these expressions, non-
contradictory variants of the constitutive equations fulfilling identically the supplementary equilibrium
equation (50e) can be obtained.

For shear deformable and unshearable laminated composite shells, such constitutive equations have
been obtained by Librescu (1975a,b, 1976), respectively, whereas for single-layered shearable shells, by
Naghdi (1963).

For shallow-shell theory, the stiffness quantities can be expressed as

(k)nBoc/)’mp — (k)sz/?mp n(k)(n + 1)7
(k)an(r33 _ (k)nB33wrr — (k)Eum'33rI(k)(n + 1), (643‘C)

(k)an3rr3 _ (k)Ew3rr3rI(k) (n + 1)7

whereas Eq. (63d) remains unchanged.
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Herein,

190) = 5((¥2)° = ("2 )°). (63

In the case of shells composed of N = 2m + 1 layers symmetrically distributed about the global middle
surface (considered to coincide with the reference surface), care should be exercised when determining the
gross stress resultants defined in Appendix A as well as (E“ﬁ;iﬁ; 233)5 Sy ((k)Z“/f; (k) }113; (k) 1";33) that
appear in different contexts in Egs. (A.1)—(A.7). In such a case, the global stiffness quantities can be defined
as

m+1

ne@aﬁwp _ Z (k)EllfwP’,l(k)(n + 1)7 (663)

k=1

m+1

R — Z () o33 k) (n+1), (66D)

k=1

m+1

= S Wy, (660

k=1

where for symmetrically laminated shells

n0(0) = {% {((k)z+)Q _ ((k)Z*)Q} for odd Q, (67)

for even Q.

For this case, 5, B =0, 5,1 B2 =0, 118" =0, whereas », B, ,, B>, ,, B (s=0,1,...)
remain different from zero.

The former stiffness quantities in the case of symmetrically laminated shells become immaterial and are
customarily referred to as the bending—stretching coupling stiffnesses. However, as is clearly seen, here these
have a more general meaning than in its classical context.

Moreover, in the present context, the symmetry in geometry and material properties should be com-
plemented by that involving the interfacial flaws also. As a result, in this case, for the determination of the
gross stress resultants and stress couples as defined by Egs. (A.1)-(A.7), in addition to the previously in-
dicated considerations regarding the vanishing of bending—stretching stiffness quantities, that related to the
symmetry of interfacial flaws also has to be addressed. Only in the framework of such a generalized
symmetry, the theory of laminated composite flat structures featuring interlaminar bonding imperfections
will experience the decoupling of bending and stretching states of stress.

9. Discussion

In this paper, a general theory of anisotropic laminated shells incorporating the effects of the damaged
bonding imperfections has been presented. Herein, laminated composite shells with imperfect bonded in-
terfaces include as special cases those featuring perfectly bonded interfaces, perfect slip interfaces, and
complete debonding implying stress free interfaces. The equations are derived for the general case of deep
shells. In addition, special cases involving the theory of shallow shells are also considered. It was shown that
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in all these cases, the theory can be formulated in terms of six 2-D functions, namely v,, ¥,, v; and /5. This
developed theory has the potential to provide valuable information on the implications of bonding defects
on the load carrying capacity of laminated shells. Moreover, using the directionality property provided by
advanced fiber reinforced composite materials, ways of mitigating the damaging effects of bonding im-
perfections can be devised.
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Appendix A

The expressions of the gross stress resultants and stress couples appearing in Egs. (50a)—(50e).

n

N
Lr=3"wrr n=0,1 (A1)

>~

—1
OmP (A2)
1

o

N N k—1
0" =Y {<k>2/~3 (oF + WPE) + (k)z")qlaZ(“) ZHOMP — Ogh ) _® 1]

(=1

~
I

o) O

N k—1
S’% _ Z {(”2)3(]()1:5 + (k>iﬂ3(1 + “)Pi) + (]()(2>mp|p Z [(Z)Z+ ((/)Nﬂ _® lI/ﬁ ) _ (£>¢(§[J]
(=1

| . (A.3)
(k) or O AP
Y |p Z Nm }7
=1
P i {(k) 1 wp i 3 kz_l (Wﬂ oz+wp” ) A2 } (A-4)
aff + 3 + . )
k=1 =1 =1
33 = o933 3
R =301+ ®py) (A3)
k=1
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= k-1
W ph — N7 00 48 ®p3 — Zw A3, (A.6)
=1 =1
and

m=2

k—1 ¢
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Appendix B.

Quantities appearing in the boundary conditions, (56a)—(56h).
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